fbpx

PENGENALAN MOTIF BATIK MENGGUNAKAN ROTATED WAVELET FILTERDAN NEURAL NETWORK

Batik merupakan kriya tekstil yang menjadi kekayaan intelektual bangsa Indonesia dan telah diakui oleh UNESCO sejak tanggal 2 Oktober 2009. Namun demikian, masyarakat Indonesia sendiri belum banyak yang mengetahui tentang perkembangan dan jenis batik yang merupakan kekayaan budaya tersebut. Pada penelitian ini, dikembangkan sebuah perangkat lunak pengenalan motif batik yang dapat digunakan untuk mengenali motif batik secara otomatis. Fitur tekstur dari citra batik diekstrak menggunakan Rotated Wavelet Transform. Selanjutnya, hasil ekstraksi berupa vektor fitur diklasifikasikan ke dalam motif-motif batik menggunakan metode klasifikasi Neural Network (NN). Uji coba menggunakan dataset testing sama dengan dataset training menghasilkan akurasi tertinggi 100%. Sedangkan uji coba menggunakan dataset testing yang berbeda dengan dataset training menghasilkan akurasi tertinggi 78,26%. Kedua nilai akurasi tersebut didapat pada learning rate 0.8, momentum 0.9, jumlah komposisi node hidden layer [40 10 1], dan level dekomposisi ke-5.

Open chat
Hmm, dilihat dari raut wajahnya sepertinya kakanya lagi pusing masalah skripsi nih. Lagi ada problem dimana kak? Belum punya judul? Stuck di proposal? Atau coding/ Algoritma? Klik di sini untuk mendapatkan bantuan dan konsultasi GRATIS.